FORMATION OF SUBSTITUTED BENZOCYCLOBUTENES THROUGH FLASH VACUUM PYROLYSIS

Peter Schiess *, Suzanne Rutschmann & Van Vien Toan Institut für Organische Chemie der Universität St. Johanns-Ring 19, CH-4056 Basel, Switzerland.

Summary: Benzocyclobutenes carrying a substituent in the four membered ring are obtained in high yield from 2-methyl benzaldehydes through a reaction sequence involving a pyrolytic 1,4-elimination of HCl in the crucial step.

Flash vacuum pyrolysis (FVP) [1] has been shown recently to be the method of choice for the preparation of benzocyclobutenones from 2-methyl-benzoylchlorides [2] and of benzocyclobutenes from 2-methyl-benzylchlorides [3] through uncatalysed 1.4-elimination of HCl.

We now wish to report that α -cyano- and α -chloro-substituted 2-methyl-benzyl-chlorides II (X = Cl, CN) prepared from 2-methyl-benzaldehydes I yield the expected HCl-elimination products III upon flash vacuum pyrolysis. This constitutes a simple and versatile access to a variety of substituted benzocyclo-butenes III which have gained importance as building blocks for the synthesis of polycyclic natural products through intramolecular Diels-Alder reaction [4].

The 2-methyl-benzylchlorides $\underline{1}$ - $\underline{6}$ (Table 1) were subjected to pyrolysis on a 1 - 5 g scale by destillation at a pressure of 0.1 mbar through a hot quartz tube (1 x 30 cm), the pyrolysis products being collected at the exit of the hot tube on a cold finger at -78° as described previously [3a]. The products were separated and characterised by comparison with authentic material. Analytical pyrolysis runs were carried out in a nitrogen flow reactor coupled to a vapor phase chromograph as described in the preceding communication [5]. In this reactor the pyrolysis temperature was determined at which 50% conversion to products was observed. At this temperature, $T_{50\%}$, the residence time of the substrate in the reactor equals its half life in the unimolecular elimination

process. At constant flow $T_{50\%}$ -values therefore constitute a measure of relative reactivity for the compounds investigated.

 $\underline{\textbf{Table 1}} \quad \alpha \text{-substituted benzocyclobutenes through flash vacuum pyrolysis.}$

Starting material	a) T _{50%}	benzocyclobutenes b)		other products b)		
CH ₂ CI 1	647°		77%	3%		
CH ₂ Cl 2	647°	© 7	53%		27%	
CHCI ₂ 3	541°	CI	80%		4 % CI	
CH ₃ 4	514°	CN CN	35%		55%	
CH ₃ 5	561°	©H 9	42%	not identified 3%		
CH ₃ 6	520°	(C) 10	19%		30%	

a) Pyrolysis temperature at which 50% inversion is reached in the N_2 -flow reactor; residence time: 0.1 s; carrier gas pressure: 2 bar [5].

The rate of HCl elimination from 2-methyl-benzylchloride $\underline{1}$ is not affected by substitution of hydrogen through chlorine in the α '-position, whereas it is greatly enhanced by chlorine in the α -position as revealed by the lower $T_{50\%}$ -values for $\underline{3}$ and $\underline{4}$ than for $\underline{1}$ and $\underline{2}$. A similar but weaker rate enhancement is observed in α -cyano-substituted benzylchlorides $\underline{5}$ and $\underline{6}$. In spite of their high reactivity, α -persubstituted benzylchlorides $\underline{4}$ and $\underline{6}$ upon pyrolysis gave the expected α,α -disubstituted benzocyclobutenes $\underline{8}$ and $\underline{10}$ in only modest yield and contaminated with thermal decomposition products which proved difficult to remove. The α -monosubstituted benzocyclobutenes $\underline{7}$ and $\underline{9}$ however, were formed in fair to high yield and in a high state of purity from their precursors $\underline{3}$ and $\underline{5}$, which in turn are easily obtained from 2-methyl-benzaldehyde by standard procedures. We have prepared α -chloro-benzocyclobutene $\underline{7}$ through pyrolysis of $\underline{3}$ on a 100 g-scale. Compound $\underline{7}$ forms a Grignard reagent in THF in excellent yield and thus allows the preparation of a variety of thermolabile, α -functionalised benzocyclobutenes (Table 2).

b) Formed in preparative runs; conversion: 90%; pressure: 0.1 mbar [6].

Table 2 α -functionalised benzocyclobutenes <u>11</u> from <u>7</u> through Grignard reaction^{a)}

	reagent	R	bp/mbar (mp)	yield	
a)	co ₂	СООН	(73-74°)	72%	[8]
b)	(CH ₃) ₂ NCHO	СНО	70-88°/0.1	74%	
c)	(CH ₃ CO) ₂ O	сосн3	60-70°/0.1	38%	[9]
d)	(CH ₃) ₃ SiCl	Si(CH ₃) ₃	105-115°/17	82%	
e)	CH ₃ J/Li ₂ CuCl ₄	CH ₃	85-105°/105	66%	
f)	C4H9Br/Li2CuCl4	с ₄ н ₉	75-90°/0.1	51%	
g)	C ₂ H ₃ Br/FeCl ₃	CH=CH ₂	60-75°/0.1	68%	[10]

a) New compounds have been characterized by analytical and spectral data.

The pyrolytic pathway to α -chloro-benzocyclobutene $\underline{7}$ is as simple and straightforward as the synthesis recently described for the analogous bromo compound [7]. Its versatility is demonstrated by the preparation of several α -cyano-benzocyclobutenes $\underline{\text{III}}$ (X=CN) carrying additional substituents, especially ether functions in the aromatic ring through the reaction sequence shown in scheme 2 (see table 3). The availability of appropriately substituted 2-methyl-benzaldehydes $\underline{\text{I}}$ and the good yield obtained in the pyrolytic formation of the four membered ring render this reaction sequence competitive with other synthetic pathways [11]-[14] to highly functionalised benzocyclobutenes $\underline{\text{III}}$.

Scheme 2

substituents R			III (X=Cl) a)		<u>III</u> (X=CN) a)			
3	4	5	6	bp/mbar (mp)	yield	mp	yield	
Н	сн30	Н	Н	90-105°/0.1	67%	58-60°	52%	[11]
H	сн30	сн ₃ о	Н	110-125°/0.1	60%	83-84°	38%	[12]
Н	о-сн	2-0	Н	(54-55°)	62%	86-88°	75%	[13]
Сн3	сн30	Н	H	(33-35°)	68%	79 - 81°	54%	
Н	CH ₃ O	CH ₃	Н	(43-44°)	63%	69-70°	58%	

Table 3 Substituted benzocyclobutenes III prepared from 2-methylbenzaldehydes I.

We wish to thank the Swiss National Science Foundation (project Nr. 2.887-0.80) and CIBA-GEIGY Co. for their generous support.

Notes and References

- [1] For a recent, comprehensive review see: R.F.C. Brown, "Pyrolytic Methods in Organic Chemistry", Academic Press, New York, 1980.
- [2] P. Schiess & M. Heitzmann, Angew. Chem. 89, 485 (1977); Angew. Chem. Int. Ed. Engl. 16, 469 (1977).
- [3] a) P. Schiess & M. Heitzmann, Helv. Chim. Acta 61, 844 (1978); P. Schiess, M. Heitzmann, S. Rutschmann & R. Stäheli, Tetrahedron Lett. 1978, 4569.
 - b) R. Gray, L.G. Harruff, J. Krymowski, J. Peterson & V. Boekelheide, J. Amer. Chem. Soc. <u>100</u>, 2892 (1978); L.G. Harruff, M. Brown & V. Boekelheide, J. Amer. Chem. Soc. <u>100</u>, 2893; G.D. Ewing & V. Boekelheide, Synthesis <u>1979</u>, 427.
- [4] W. Oppolzer, Synthesis, $\underline{1978}$, 793; T. Kametani & H. Nemoto, Tetrahedron $\underline{37}$, 3 (1981).
- [5] P. Schiess, S. Rutschmann & V.V. Toan, Tetrahedron Lett., preceding communication.
- [6] Pyrolysis temperatures in preparative experiments were $80-90^{\circ}$ higher than the T_{508} -values found in analytical tests since residence times were shorter and conversions higher in preparative than in analytical runs.
- [7] M.R. DeCamp & L.A. Viscogliosi, J. Org. Chem. 46, 3918 (1981).
- [8] L. Horner, W. Kirmse & K. Muth, Chem. Ber. 91, 430 (1958).
- [9] R. Hug, H.J. Hansen & H. Schmid, Helv. Chim. Acta 55. 10 (1972).
- [10] M.R. DeCamp, R.H. Levin & M. Jones, Tetrahedron Lett. 1974, 3575.
- [11] T. Kametani, H. Nemoto, H. Ishikawa, K. Shiroyama & K. Fukumoto, J. Amer. Chem. Soc. 98, 3378 (1976).
- [12] T. Kametani, K. Ogasawara & T. Takahashi, Tetrahedron $\underline{29}$, 73 (1973).
- [13] E.F. Jenny & K. Schenker, Swiss patent 485647, Chem. Abstr. <u>72</u>, p. 132 388 d (1970).
- [14] J.F. Bunnett & J.A. Skorcz, J. Org. Chem. <u>27</u>, 3836 (1962).

(Received in Germany 7 June 1982)

a) New compounds have been characterized by analytical and spectral data.